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ABSTRACT. Topic modeling is a branch of Natural Language Processing (NLP) that
alms to organize large collections of texts into coherent groups according to word
co-occurrence patterns, with Latent Dirichlet Allocation (LDA) remaining one of
the most widely used and interpretable probabilistic approaches. Recent advances
in NLP, particularly transformer-based language models, offer improved document
representations. It is also known that the size of the model (in terms of number
of parameters) has a significant impact in the performance of the language models
on different pre-defined tasks. In this study, we systematically examine the effect
of model size on topic quality by analyzing the performances of seven transformer-
based language models (from small models such as MiniLM to large ones such as
LLaMA-2) in a BERTopic pipeline on a variety of corpora. Topic quality is evaluated
using coherence and divergence metrics following Réder et al. (2015). Our results
indicate that model size, ranging from 22 million to 13 billion parameters, has a
negligible impact on the quality of the topic, suggesting that smaller models can
achieve comparable performance to larger models.

1. INTRODUCTION

Topic modeling is a central tool in Natural Language Processing (NLP) for revealing
hidden semantic regularities in large corpora. In this view, a topic is modeled as a prob-
ability distribution over the vocabulary, while a document is represented as a mixture of
several topics. The goal is to discover these recurring structures automatically so they
can support downstream tasks such as summarization, document organization, and cor-
pus analysis. Classical approaches, such as Latent Dirichlet Allocation (LDA) [1] and
Non-negative Matrix Factorization (NMF) [11], generally rely on a bag-of-words rep-
resentation that ignores word order and treats documents as token-frequency vectors.
While fast and often interpretable, such models struggle with context and polysemy,
which can yield topics of limited coherence, especially on specialized or heterogeneous
data.

Recent progress mitigates these issues by using transformer-based architectures, no-
tably BERT (Bidirectional Encoder Representations from Transformers) [5]. Unlike
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earlier pipelines, BERT produces context-dependent embeddings, so a word’s repre-
sentation adapts to its surrounding tokens. These richer encodings have advanced
many applications, from text classification to translation and question answering.

Building on this foundation, BERTopic [7] is a recently developed and highly flexible
framework for topic modeling that leverages transformer-based language models. It
operates in three main stages: (1) creating document embeddings using a pre-trained
language model, (2) clustering those embeddings into groups of semantically similar
documents, and (3) extracting topic representations using a class-based variation of
TF-IDF, which identifies representative keywords for each cluster. This modular and
embedding-based approach overcomes many of the limitations of traditional models
and yields more coherent, interpretable, and domain-adaptive topics.

Nevertheless, interpreting the extracted topics remains a challenging task. By inter-
pretability, we refer to the ability of a human reader to make sense of a topic based
on its most representative words. For example, consider a topic represented by the
keywords: infection, symptoms, treatment, fever, diagnosis. A human observer would
likely interpret this as a health-related topic concerning infectious diseases. However,
if the representative words are vague or too general (e.g., thing, process, case, infor-
mation), the topic becomes difficult to interpret. This illustrates the importance of
producing interpretable topics in downstream tasks. This is particularly important
for applications that require human-in-the-loop validation or exploration of thematic
structures. While some metrics have been proposed to quantify the interpretability
and overall quality of the topics, this remains an open research question. A metric is
generally considered reliable if it correlates well with human judgments regarding how
coherent or meaningful a topic appears [22].

Transformer-based language models have revolutionized the NLP field, offering pow-
erful and context-aware word representations. These representations are particularly
effective for tasks such as topic decomposition, where understanding semantic simi-
larity is key. BERTopic leverages this strength by allowing users to plug in different
transformer-based models at the first step of its pipeline, offering high flexibility in
adapting to various resource constraints and domains.

A common observation in NLP is that increasing the size of a language model (i.e.
the number of parameters) typically leads to improved accuracy and task performance
[10]. While this trend is well established for tasks such as classification or translation,
there has been limited exploration into how model size affects the interpretability and
coherence of topics produced in topic modeling tasks. This raises a critical question:
How does the choice of language model, particularly its size (measured in number of
parameters), affect the quality of the extracted topics? Larger language models often
yield better results across NLP benchmarks, but they come with higher computational
costs. On the other hand, smaller models offer practical advantages in terms of speed
and efficiency, making them attractive in resource-constrained settings. Understanding
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this trade-off is essential for guiding the selection of language models in topic modeling
workflows.

In this study, we used a pipeline based on BERTopic to investigate how the quality
of topic decomposition is influenced by the size of the underlying language model. We
begin by benchmarking seven pre-trained transformer-based models on the widely used
20 Newsgroups dataset, which contains roughly 20,000 documents categorized into 20
distinct newsgroups. This provides a standard baseline for evaluating topic coherence
and alignment with human-labeled categories.

We use the same method to process ten more datasets, including an in-house cus-
tomized database selected from PubMed composed by all publications having the words
"Large Language Models”, ” Al-assisted diagnosis” or ” Artificial Intelligence” in their
abstracts or content between January 2024 and May 2025. This dataset containing the
most current trend in biomedical research on Al and LLM is open and can be freely
downloaded [23]. The experimental code for this paper has also been open sourced and
can be found at [19].

To objectively evaluate topic models, we take advantage of standardized measures.
To evaluate the interpretability, coherence and semantic consistency of topics and
to discriminate topic models, we measure topic coherence and topic divergence in
BERTopic. We also systemically compare various models with each other and therefore
pick the best model to fit our text document.

The remainder of the paper is organized as follows: Section 2 reviews required
background and metrics; Section 3 details datasets, preprocessing, and the evalua-
tion pipeline; Section 4 presents the experiments and findings and Section 5 discusses
implications and future directions.

2. BACKGROUND

In this section we gather the core concepts needed for the experiments. We begin by
describing two well known topic-modeling methods: Latent Dirichlet Allocation (LDA)
and Non-negative Matrix Factorization (NMF). These methods have been widely used
for extracting hidden themes from document collections. We then summarize how
these models operate and where their limitations lie, and we introduce two evaluation
metrics for topics: coherence and divergence, used to compare quality and separation
among topics. Finally, we give a concise overview of the Transformer architecture that
underpins modern language models and serves as the backbone of BERTopic used in
this work.
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2.1. Overview of NMF and LDA for topic modeling.

Non-negative Matrix Factorization (NMF).. Proposed by Lee and Seung [11], NMF is
a linear-algebraic approach widely adopted in topic modeling for uncovering structured
patterns in non-negative data. In NLP it is applied to a non-negative document—term
matrix V' € RZ[", where m denotes the number of documents and n the vocabulary
size. The objective is to approximate V by a product of two lower-rank non-negative
matrices:

VaWH

where W € RZ* links documents to topics and H € R%%™ stores topic-word weights.
Non-negativity encourages sparse, parts-based decompositions that are easy to read:
topics emphasize distinct sets of high-weight terms, and documents become mixtures of
those topics. In contrast to generative models such as LDA, NMF is deterministic and
algebraic, typically fast and interpretable—especially when the input uses TF-IDF.
Latent Dirichlet Allocation (LDA).. LDA [1] is a foundational probabilistic model that
aims to infer latent topics from observed word usage, ideally yielding semantically
meaningful themes (e.g., “politics” or “sports”). It posits that each document is a
mixture of topics and that each topic defines a probability distribution over words
drawn from a fixed vocabulary.

Formally, for each document a multinomial topic proportion is drawn from a Dirich-
let prior; for every word position, a topic is sampled from that document’s proportions,
and the word token is then sampled from the selected topic’s word distribution. This
hierarchical Bayesian construction encodes that documents mix several topics in dif-
ferent proportions and that words associated with a topic tend to co-occur.

The steps that LDA goes through to generate topics are as follows:

(1) For each topic k =1,2,..., K, draw a distribution over words: ¢ ~ Dir(/3)
(2) For each document d in the corpus:
(a) Draw topic proportions: ; ~ Dir(«)
(b) For each word wgp,:
(i) Draw a topic assignment: zg4, ~ Multinomial(6,)
(ii) Draw the word: wg, ~ Multinomial(¢,, )

In this formulation, o and S are the Dirichlet hyperparameters controlling, respec-
tively, the sparsity of document—topic proportions and topic-word distributions [15].
LDA inference aims to compute the posteriors of the latent variables (6, ¢, z) condi-
tioned on the observed words. Because an exact solution is infeasible, one resorts to
approximations such as variational inference [1] or collapsed Gibbs sampling [6].

The model outputs per-topic word distributions and, for each document, a mixture
over topics—useful for summarization, clustering, and exploratory analysis. As an il-
lustration, Fig. 2.1 visualizes a 20-topic LDA trained on the 20 Newsgroups corpus.
Left: an inter-topic distance map produced by multidimensional scaling (MDS); each

circle denotes a topic and its size reflects its prevalence in the corpus, with Topic 14
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highlighted. Right: the ten most relevant terms for Topic 14, computed via a rele-
vance score that balances frequency and distinctiveness. Red bars indicate estimated
within-topic term frequencies, whereas blue bars show corpus-level frequencies. The
visualization follows [25] and uses relevance as in [3].

Intertopic Distance Map (via multidimensional scaling) Top-10 Most Relevant Terms for Topic 14 (3.4% of tokens)
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FIGURE 2.1. Visualization of the LDA topic decomposition with 20 top-
ics trained on the 20 Newsgroups dataset.

2.2. Word embeddings and contextual representations. Earlier NLP pipelines
typically represented words as one-hot indices, which ignore semantic relatedness and
structural similarity. With the advent of word embeddings it became clear that map-
ping tokens into dense, low-dimensional vectors captures both semantic proximity and
syntactic relations more effectively.

A widely used method for learning such vectors is Word2Vec [13], which leverages
local co-occurrence statistics. T'wo training variants are common: CBOW, which pre-
dicts a center word from its context, and Skip-gram, which predicts surrounding words
from a target token. Despite their simplicity, these models yield high-quality embed-
dings that encode syntactic and semantic regularities. For instance, if emb(w) denotes
the embedding of word w, one observes arithmetic patterns such as:

emb("king”) — emb(”man”) 4+ emb(”woman”) ~ emb(” queen”)
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which suggests that the space of the embedding catches some semantical relations that
are present in natural language.

Though both Word2Vec and similarly static embeddings (e. g., GloVe [17]) allot one
vector per word irrespective of context, they fail to disambiguate between a polysemous
word (e. g.,“bank”as an institution versus a riverbank), hence the rise in popularity of
contextual embeddings formed using deep neural models such as BERT.

Introduction of the Transformer architecture [28] changed the paradigm of lan-
guage modeling from computing context free embeddings to using context sensitive
ones. Unlike previous sequence models like RNN or LSTM that were able to leverage
self attention mechanism and in turn the model was able to take into consideration
the saliency of each word in a sentence when encoding another word, leading to better
performance especially with respect to capturing long term dependencies, better word
sense disambiguation, etc.

Let us take “He went to the bank to withdraw cash” and “She sat by the bank
of the river” for example. In both sentences, the embedding representation of the
word “bank” would not be the same because the transformer can utilize the attention
mechanism to capture contextual clues, which then gives birth to the context-aware
representations as the fundamental building blocks of modern pre-trained language
models such as BERT [5], RoBERTa [12], and GPT [18], which have achieved ground-
breaking results in many NLP applications.

2.3. The Transformer Architecture. Transformers [28] underpin most modern NLP
systems. Unlike recurrent architectures (RNNs/LSTMs), they are built around self-attention,
enabling dependencies to be captured between any pair of tokens regardless of distance.

A standard transformer comprises a stack of encoders and, for sequence-to-sequence

tasks, a stack of decoders; each block contains a self-attention layer and a position-wise
feed-forward network.

Encoders. Each encoder block combines multi-head self-attention with a feed-forward
network. Residual connections and layer normalization follow each sub-layer to stabilize
training.

Self-attention. Given an input matrix X € R¥*? (with N tokens and embedding di-
mension d), self-attention lets every token attend to all others in the sequence.

To capture diverse relations, self-attention employs n heads, each with its own
learned projections:

o WX e R™x (query projection),
o WK € R™4x (key projection),
o WY € R¥dx (value projection).
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Head ¢ computes its query, key, and value matrices as:

Qi=X W,
K, =X WK,
‘/i:X'VViV-

The head’s attention is computed via the scaled dot-product:

KT
Attention; = softmax (QZ . ) V.
Vg
This yields attention-weighted representations indicating how strongly each token
attends to others.

Outputs from the n heads are concatenated and linearly projected:
MultiHead(X) = Concat(A;, As, ..., A,) - Wo,

where W, € Rdxxd,

Remark. Self-attention integrates evidence from the entire sequence. For instance,
the embedding of “bank” shifts depending on whether nearby words imply finance or
a riverside.

Feed-forward Neural Network. After the attention layer, each token is passed indepen-
dently through the same two-layer feed-forward network:

FFN(J?) = ReLU(a:Wl + bl)WQ + bg.

The nonlinearity equips the model to form richer token representations. The FFN
operates position-wise, i.e., the same network is applied independently to every token
in the sequence.

Decoders. Decoder blocks mirror encoders but add encoder—decoder attention,
which lets the decoder query the encoder outputs so predictions can be conditioned on
the source sequence. During training, masked self-attention is used in the decoder to
prevent peeking at future positions.

Final Softmax Application. After the decoder stack, each output position yields a vec-
tor v. A final linear layer followed by a softmax converts v into a probability distribution
over the vocabulary:

g = softmax(W - v +b).

During inference, the model can generate words by selecting the most likely token
(greedy decoding) or by sampling strategies. During training, loss functions such as
cross-entropy or KL-divergence are used to compare predicted distributions against the
ground truth, enabling optimization via backpropagation.
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2.4. Topic Coherence and Topic Divergence Metrics. Evaluating the quality
of topics produced by topic models is not an easy job, because most topic models
are unsupervised, so we cannot use the common assessment metrics like accuracy or
precision. Therefore, researchers propose special indexes, which evaluate the quality
from two aspects—topic coherence and topic divergence. The measurements can
also tell us something about the interpretability and differentiation and meaning of the
topics produced — almost always consistent with human judgements about how good
topics are.

Why are topic-coherence metrics useful? They provide a quantitative proxy for
the interpretability of topics, allowing practitioners to (i) choose the number of topics
or tune hyper-parameters without repeated human annotation, (ii) compare different
modelling algorithms on a common scale, and (iii) track how thematic structure drifts
over time. Because these scores correlate strongly with human judgements, they have
become a de-facto objective function when optimizing topic models [22].

2.4.1. Theoretical Framework for Topic Coherence. Following Roder etal. [22], topic
coherence is cast as a modular pipeline with four ingredients: segmentation, proba-
bility estimation, confirmation measure, and aggregation. This viewpoint yields
a common mathematical template encompassing most coherence measures in the liter-
ature [26].

Let T' = {wy,ws, ..., wy} be the top-N word list that represents a topic.

Definition 2.1 Topic Coherence: Let S(T) = {(W/, W)}, be a segmentation of
T into m word-set pairs. Let P: # x # — [0, 1] be a probability estimation function,
and let M(W/ W7; P) € R be a confirmation measure. Then the coherence of topic T’
is given by:

Coherence(T ZM (W, W5, P),

where ¥ is an aggregation operator (e.g., arlthmetlc mean).

Segmentation S. Segmentation defines how the top-N words are split into meaningful
subgroups. A common choice is the one-set segmentation:

Soneset(T') = {({wi}, T\ {wi}) | wi € T}
Other segmentation strategies include pairwise segmentation (all unordered word pairs),
or sliding window based subsets.
Probability Estimation P. The map P(w;, w;) quantifies how often w; and w; co-occur.
Common choices include:

e Document-based: Proportion of documents in which both words co-occur
e Sliding Window: Frequency of co-occurence within a certain sized window
(e. g., 70 tokens)



A COMPARATIVE STUDY OF TRANSFORMER-BASED EMBEDDINGS 9

e External Corpus: Co-occurrence statistics based on very large reference cor-
pora like Wikipedia

Confirmation Measure M. The confirmation measure checks if the word set W’ supports
W* at the level of P and can be represented as the following examples.
e UMass: Uses asymmetric log conditional probability:
D(w;,w;j) +¢
D(w;)
where D(w;, w;) counts co-occurrences in documents.
e NPMI: Normalized Pointwise Mutual Information:

(wZNWQ)

108 B, Plung)
—log P(wp, wy)

MUMass(wia wj) = log

MNPMI(wpa wq) =

e (,: Measures cosine similarity between NPMI vectors v; and v:
M, (w;, T\ {w;}) = cos(vy, V).

Aggregation . The Arithematic mean value of all pairwise confirmation ccores:

Coherence(T ZM (W], W P).

This abstract formulation accommodates most coherence metrics by selecting appro-
priate design choices for S, P, M, and . For example:

o Cynass: asymmetric segmentation, document co-occurrence, log-probability,
mean. The Cyarqss coherence is computed by:

CUMass ZIO wl?w])+€’

1<j )

where D(w;, w;) denotes the number of documents containing both w; and wj,
D(wj;) counts documents containing w;, and ¢ is a small smoothing constant.
This score evaluates the topic with respect to a number of documents sharing
the same words in the top words, or the term-document matrix in asymmetric
conditional probabilities.

o Cnpyr: pairwise segmentation, sliding window estimation, PMI confirmation,
mean. The Cyparr coherence is a Normalized Point-wise Mutual Information
for a pair of words w;, w;. It is defined as:

MNPMI(wp7 wq) =

This metric rewards word pairs whose joint probability exceeds what indepen-
dence would predict, normalizing by self-information so that scores fall in [—1, 1]
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and remain comparable across corpora. Aggregating NPMI over the top word
pairs yields a coherence score for the entire topic.

e (,: one-set segmentation, external corpus with sliding window, cosine similar-
ity, mean. The C, metric instantiates all four dimensions of their coherence
design space—segmentation (), probability estimation (P), confirmation mea-
sure (M), and aggregation (X)—as follows:

— Segmentation S: one-set segmentation (Sypeset) treats the first word w;
as a singleton and the remainder of the top-NV list as a complementary set,
yielding ordered pairs ({w;}, {w;.}).

— Probability P: co-occurrence counts are collected in a large sliding win-
dow of 110 tokens over an external reference corpus (Wikipedia), denoted
P, (110).

— Confirmation M: for each pair the Normalized PMI values are assem-
bled into confirmation vectors; semantic relatedness between two segments
is then computed via cosine similarity of these vectors (an indirect confir-
mation function).

— Aggregation X: the arithmetic mean of all pairwise confirmation scores
provides the final topic-level value.

This metric first embeds every word in a vector of its NPMI relations to the
other words, then measures how similar these relation patterns are via cosine
similarity. Formally, let v; be the NPMI vector of word w; against the remaining
set, then

N
C,(T) = %Zcos(vi,V),
i=1

where ¥ is the mean confirmation vector, and cosine is bounded in [—1,1].
Thanks to the large window and indirect confirmation, C, achieves the highest
average Pearson correlation (r ~ 0.73) with human topic ratings across five
gold-standard datasets. Thus, it functions as the default coherence metric in
common-used python libraries like BERTopic [7] and Gensim [20]. Moreover,
the C, metric, was identified as the best performer in the exhaustive study by
[22].

In the discussions which follow, this metric shall be used to compute topic coherence.

2.4.2. Topic Divergence. While topic coherence focuses on whether the top words that
define each topic actually go together, topic divergence is the statistic that quantifies
the dissimilarity between several themes. It is undesirable for a topic model to produce
duplicate and overlapping topics. If two topics have the same set of highly probable
words, they may be representing the same meaning, which makes interpretation of
topics difficult.
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High topic divergence shows that learned topics are capturing different parts of the
corpus. This quality is important for applications such as document classification,
thematic clustering or exploratory data analysis. Measuring this helps evaluate if
there are enough topics for the diveristy of the corpus that has been used for training,
whether the model is generating semantically diverse topics or output generated by the
model represents too much similar content.

Definition 2.2 Topic Divergence: Let ® = {41, 0o, ..., dx} denote the set of K
topic-word distributions learned by the model, where each ¢, € A" is a probability
vector over a vocabulary of size V, i.e.,

br = [Pu(w1), ..., ox(wy)], with quk(wj) =1.

Jj=1

Let D(- || -) be a divergence or distance on probability vectors. The average pair-
wise topic divergence is defined by:

ﬁ > D&l ¢))

1<i<j<K

TopicDivergence(®) =

Larger values indicate that topics are more clearly separated from one another.
Common Divergence Measures.

e Jensen—Shannon Divergence (JSD) is a symmetrized and smoothed version
of the Kullback-Leibler (KL) divergence. For discrete distributions ¢; and ¢;
on the same vocabulary and their mixture M = %(qﬁz + ¢;), one has:

1
JSD(¢: || ¢5) = QDKL(@ | M)+ %DKL(%‘ | M),

where Dgp, denotes KL divergence. With base-2 logarithms, JSD € [0, 1]. JSD
is commonly used to maximize inter-topic separation when choosing the number
of topics [4].

e Hellinger Distance: A geometric measure that computes the ¢? distance
between the square roots of two probability vectors:

Dy(¢i, ¢5) = % H\/E— Vo5

Empirical studies using hierarchical clustering under the Hellinger distance
(e.g. [16]) reveal high-level thematic structure in very large topic models.
e Cosine Distance: an angle-based dissimilarity (one minus cosine similarity):

09
[oillllo; 1l

) .

Dcos((bi’ ¢]) =1



12 A. DING, T. RAPAKA AND J. YANG

Topic divergence is widely used to identify redundant or overlapping topics, to se-
lect K by maximizing inter-topic separation, and to visualize the topic geometry via
clustering or dimensionality-reduction methods.

3. MATERIALS AND METHODS

In this study we examine how the size of the underlying transformer-based language
model affects topic decomposition in the BERTopic [7] pipeline. Our aim is to test
whether scaling improves topic coherence and increases topic diversity. To that end,
we run a controlled set of comparisons across several transformer encoders within one
unified pipeline and evaluate them using standardized metrics. This section details
the experimental setup, covering datasets, preprocessing, modeling pipeline, and the
encoders under comparison.

3.1. Description of the Datasets. We conduct our experiments on eleven distinct
text corpora:

20 Newsgroups. The 20 Newsgroups corpus [14] is a widely used benchmark of about
twenty thousand documents organized into 20 categories. Its topics span politics,
sports, religion, science, and more, providing a heterogeneous testbed for topic model-
ing and a standard baseline for assessing coherence and alignment with human labels.

AG News Corpus. The AG News Corpus contains approximately 120,000 news articles
collected from online sources in four categories: World, Sports, Business, and Sci/Tech.
A widely used benchmark for text classification models, including deep learning base-
lines. The data are available in CSV format with columns for class index, title, and
description.

Amazon Reviews (2018). For a structured consumer-review domain, we employ the
2018 Amazon Reviews dataset, which contains large-scale product reviews with rat-
ings, detailed metadata, and category labels. Each review includes fields such as
reviewText, summary, overall rating, and product identifiers, forming a rich bench-
mark for sentiment analysis, aspect extraction, and recommendation-related topic mod-
eling. Its breadth across product categories and mixture of narrative and structured
data provides a controlled environment for studying semantic alignment and domain
adaptation.

BBC News Dataset. The BBC News Dataset contains 2,225 news articles published by
BBC grouped into five categories: business, entertainment, politics, sport, and tech.
Used for basic text classification and clustering experiments due to its clean labeling
and balanced topics. The data are available as plain text files organized in folders by
category.
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CORD-19 Dataset. This dataset contains many academic papers about COVID-19
Research, with the latest release being 18.7 GB in size. The data is mostly con-
tained in .tar files, but for our purposes, we use the file metadata.csv given with the
dataset to access the abstracts for the papers. The dataset can be downloaded at

. For this study, we sampled 10000 abstracts
from the dataset.

IMDb Large Movie Review Dataset. We also incorporate the IMDb movie review cor-
pus, a long-standing benchmark for text sentiment classification. It consists of 25,000
positive and 25,000 negative labeled reviews, with an additional unlabeled subset for
semi-supervised experiments. As a clean and balanced dataset focused on opinion-rich
text, IMDDb offers a stable baseline for evaluating coherence metrics, sentiment-topic
disentanglement, and embedding quality on short to medium-length narratives.

PubMed Collection. We curated a domain-specific set of recent PubMed abstracts to
complement our general-domain corpora. Using a custom Python script! and the
NCBI Entrez API, we retrieved papers dated between Jan 1, 2024 and May 31,
2025 containing the terms "Large Language Models", "AI-assisted diagnosis",
or "Artificial Intelligence". The resulting CSV dataset® includes roughly 49.2k
English abstracts with metadata (PMID, title, authors, journal, date, DOI, keywords,
links) and is released under MIT. It captures current trends in biomedical Al and is
well suited for evaluating topic models in a domain-centric setting.

Pushshift Reddit Collection. To incorporate a large-scale, real-world social discourse
dataset, we utilize a curated slice of the Pushshift Reddit archives. The collection
contains historical Reddit posts and comments stored in JSON format, spanning mul-
tiple years and covering a broad range of communities. Its scale—hundreds of millions
of entries in full form—captures evolving online conversations, polarization patterns,
and community-specific jargon. This dataset enables evaluation of topic coherence,
temporal topic drift, and robustness of clustering methods under noisy, user-generated
content.

Reuters-21578. The Reuters-21578 corpus contains 21,578 Reuters financial and news
articles from 1987 manually labeled by topic categories such as “earn,” “acq,” and
“trade.” Used for text categorization, topic modeling, and document classification
benchmarking. The data are available as SGML or plain text files with topic labels in
metadata.

Wikipedia Abstracts. This dataset contains abstracts from many Wikipedia articles,
with the English dataset having 6.58 million rows. More details may be found at

. In this study, we
sampled 10000 abstracts from the English subset.

ncluded in our code repository.
2Available at:


https://github.com/allenai/cord19
https://huggingface.co/datasets/laion/Wikipedia-Abstract
https://huggingface.co/datasets/willyrv/pubmed2024_IA-LLM-diagnostic
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Yahoo Answers Topics. The Yahoo Answers Topics corpus is a large corpus of community-
generated questions and answers from Yahoo Answers with 10 main categories. Each
record includes a question title, content, best answer, and topic label. Commonly used
for topic classification, question-answer modeling, and text summarization research.
The data are available in CSV or JSON format.

The versions of the above described datasets that were used on our experiments can
be downloaded here:

3.2. Preprocessing steps. Before running BERTopic, we apply a small set of prepro-
cessing steps to standardize and normalize inputs. The goal is to reduce noise, improve
embedding quality, and keep processing consistent across datasets.

Tokenization. The first step in preprocessing a document is to tokenize it—i.e., break
it down into individual words or tokens. In our pipeline, we use the simple _preprocess
function from the gensim library. It performs whitespace tokenization and additionally
removes punctuation, sets all characters to lowercase, and filters out short words. While
this is a lightweight approach, it ensures speed and compatibility with the downstream
topic modeling pipeline.

Stopword Removal. During tokenization, common stop words—i.e., function words
that carry little semantic content such as “the”, “and”, “but”, etc.—are automatically
filtered out by simple preprocess. This improves the focus of the model on content-
rich terms that are more indicative of latent topics.

Lemmatization. While full lemmatization (i.e., reducing words to their root forms such
as “better” — “good” or “went” — “go”) is not explicitly performed in the current im-
plementation, the lowercase filtering and punctuation removal from simple _preprocess
contribute to partial normalization of word forms. In future extensions, integration
with a lemmatization toolkit such as spaCy [9] could improve linguistic normalization
further.

Corpus Preparation. After preprocessing, we build a bag-of-words representation using
gensim’s Dictionary, which assigns a unique ID to each token. Documents are then
converted to sparse vectors via doc2bow to record per-document token frequencies.
These structures enable efficient computation of coherence metrics.

Motivation. This preprocessing pipeline balances simplicity and effectiveness: it stan-
dardizes input across domains (general and biomedical), filters irrelevant noise, and
generates the linguistic units necessary for calculating both coherence and diversity
scores. It ensures that the input to the transformer-based embedding models reflects
meaningful semantic structure.

3.3. The BERTopic pipeline. To perform topic decomposition, we rely on the BERTopic
framework [7], a modern and flexible topic modeling algorithm that leverages transformer-
based embeddings to extract semantically meaningful topics. BERTopic proceeds in
three main stages:


https://huggingface.co/datasets/willyrv/text_datasets_for_experiments/tree/main
https://huggingface.co/datasets/willyrv/text_datasets_for_experiments/tree/main
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(1) Document Embeddings. Each preprocessed document is embedded into a
high-dimensional vector space using a pre-trained transformer-based language
model. These embeddings preserve semantic relationships, which account for
different contexts, between words and documents. BERTopic is model-agnostic
at this stage, allowing any sentence embedding model compatible with the
sentence-transformers library [21].

(2) Clustering. The document embeddings are then clustered using a density-
based algorithm—typically HDBSCAN [2]—which groups semantically similar
documents without requiring a fixed number of clusters. Each resulting cluster
is treated as a potential topic.

(3) Topic Representation. For each cluster, BERTopic uses a class-based variant
of TF-IDF to identify the most representative words. This approach (referred
to as ¢-TF-IDF') computes the importance of a word in a cluster relative to the
entire corpus, providing interpretable keyword lists for each discovered topic.

Model Variation. In our experiments, we leverage BERTopic’s modular design to substi-
tute the underlying embedding model and evaluate how this choice affects the coherence
and diversity of the extracted topics. Specifically, we test a range of transformer-based
models of varying sizes (e.g., MiniLM, DistilBERT, BERT-base, and larger LLaMA
variants). This allows us to isolate the influence of model size (measured in number
of parameters) on the interpretability and discriminability of topics. The number of
topic that was used for each model was decided by the "default” internal parameters
of BERTopic[8], via clustering algorithm we mentioned earlier, and the metrics could
be slightly different if we change that meta-parameter.

Advantages. The ability to switch embedding models without modifying the rest of the
pipeline makes BERTopic particularly well-suited for comparative evaluations. More-
over, the use of context-aware embeddings improves the handling of polysemous words
and enhances the semantic quality of the topics.

3.4. Embedding Models Used For Comparison. We evaluated seven transformer-
based embedding models spanning a range of parameter scales, from compact (22
Millions) to extremely large (13 Billions), to explore how model size affects topic quality
within the BERTopic pipeline.

all-MiniLM-L6-v2. A compact Sentence-Transformer with only ~22 M parameters
designed specifically for sentence embedding tasks. It transforms sentences into 384-
dimensional vectors using a contrastive training objective over more than one billion
pairs. Despite its small size, it delivers high-quality semantic embeddings ideal for clus-
tering and topic modeling. More details may be found at https://huggingface.co/sentence-
transformers/all-MiniLM-L6-v2.

MiniLM-L12-H384-uncased [29]. MiniLM retains the structural complexity of deeper
models (12 transformer layers and 384 hidden dimensions) but reduces parameter count
to around 33 M, striking a balance between performance and efficiency.
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DistilBERT [24]. A distilled version of BERT-Base with ~66 M parameters (~40%
fewer than BERTgasg) achieved by reducing depth from 12 to 6 layers and employing
knowledge distillation alongside a masked-language modeling objective. DistilBERT
preserves ~97% of BERT’s performance while being significantly faster and smaller.
BERT-base-uncased [5]. The original BERT-Base model with 110 M parameters,
featuring 12 encoder layers and 768 hidden units. It was pretrained on over 3.3 B to-
kens combining BooksCorpus and English Wikipedia materials, using masked language
modeling and next-sentence prediction.

RoBERTa-base [12]. An optimized variant of BERT with approximately 125 M pa-
rameters that removes the next-sentence prediction and introduces dynamic masking.
Trained on a much larger corpus (~160 GB text including CC-News and OpenWeb-
Tezt), RoOBERTa improves learning efficiency and downstream performance.
LLaMA-2-7B [27]. A decoder-only LLM with ~7 B parameters, trained on 2 trillion
tokens and employing grouped-query attention to optimize inference. The model offers
strong generative capabilities and represents the low end of the large-model spectrum.
LLaMA-2-13B.. The medium-sized version of the family with ~13 B parameters,
pretrained similarly on massive datasets and achieving benchmark performance com-
petitive with 175 B-parameter models.

3.5. Model Size and Memory Constraints. Transformer-based language models
with billions of parameters—such as LLaMA-2-13B

—require substantial GPU memory, often exceeding 24-32 GB even for inference. Each
parameter in a model is typically stored as a 32-bit floating point value (FP32), and
during inference, intermediate activations and gradient caches also consume significant
memory. As a result, deploying such large-scale models on commodity hardware (e.g.,
single GPUs or limited CPU RAM) becomes infeasible without optimization.
Quantization for Efficient Inference. To address these limitations, we apply quantiza-
tion, a compression technique that reduces the bit-width of the model parameters. In
our experiments, we use 8-bit quantization, storing each weight with 8 bits instead of
32. This reduces memory usage by up to 75% and enables inference of large models
like LLaMA-2-13B on modest hardware configurations. Quantization trades off some
numerical precision for large gains in efficiency, often with negligible impact on down-
stream performance—especially for embedding or topic modeling tasks that are less
sensitive to slight variations in representation. It is a widely adopted technique in
model deployment pipelines for reducing latency and resource demands, particularly
in production environments or academic setups with constrained compute resources.

. The full experimental code, including data collection, preprocessing, and evaluation
scripts, can be found at [19].
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4. RESULTS

In the following section, we present the results of our comparative evaluation of topic
models generated by BERTopic using various transformer-based language models. The
experiments were carried out on a workstation using Ubuntu 24.04.3 LTS with kernel
6.14.0-28-generic. The system features an AMD Ryzen 7 7700X CPU (8 cores, 16
threads), 64 GB of RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB of
memory (CUDA 12.9, driver 575.64.03).

Our primary goal was to assess how the size of the embedding model influence the
coherence and diversity of discovered topics. We benchmarked seven encoders, ranging
from compact models like MiniLM and DistilBERT to large-scale architectures such
as RoBERTa and LLaMA-2 (7B and 13B). Each model was tested both in its original
form and under 8-bit quantization, allowing us to explore performance trade-offs under
memory-constrained settings. We report two primary metrics: topic coherence (which
measures the semantic consistency of top words within each topic) and topic diversity
(which reflects inter-topic dissimilarity and redundancy). Note that for the LLaMA-
2 13B model, we only report results under quantization. Due to its large memory
footprint, the non-quantized version of LLaMA-2 13B could not be executed within our
hardware constraints. Consequently, its row appears empty in the unquantized results
table, and only its quantized scores are available for comparison. The performance
of the models on each corpus are illustrated in Figure 4.1 and Figure 4.2. The mean
coherence values achieved by each model across all corpora are illustrated in Figure 4.3.

Dataset MiniLM-L6 | MiniLM-L12 | DistilBERT | BERT-base | RoOBERTa | Llama2-7B (Q) | Llama2-13B (Q)
20Newsgroups 0.6687 0.6754 0.6627 0.6820 0.6653 0.6685 0.6796
AG News 0.8488 0.8402 0.8332 0.8423 0.8460 0.8467 0.8374
Amazon Reviews 0.5777 0.5640 0.5677 0.5786 0.5704 0.5786 0.5725
BBC News 0.4932 0.4844 0.5121 0.5194 0.5186 0.5078 0.5095
CORD-19 0.6486 0.6636 0.6406 0.6468 0.6422 0.6442 0.6503
IMDb 0.6312 0.6381 0.6377 0.6360 0.6251 0.6308 0.6263
PubMed 0.6718 0.6752 0.6679 0.6731 0.6733 0.6741 0.6654
Pushshift 0.5980 0.5926 0.5950 0.6078 0.5981 0.6066 0.5956
Reuters — — — 0.7385 — 0.7445 0.7436
Wikipedia 0.5798 0.5968 0.5909 0.5931 0.5948 0.5928 0.5888
Yahoo Answers 0.5440 0.5567 — 0.5422 — 0.5423 —

TABLE 4.1. Topic coherence across 11 datasets. Bold indicates
the best encoder per dataset; (Q) denotes quantized runs for Llama-2.
Missing entries were not evaluated.
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F1GURE 4.1. Topic coherence across datasets as a function of model size
(parameters). Each line represents a different dataset.
Dataset MiniLM-L6 | MiniLM-L12 | DistilBERT | BERT-base | RoOBERTa | Llama2-7B (Q) | Llama2-13B (Q)
20Newsgroups 0.9930 0.9930 0.9918 0.9934 0.9927 0.9929 0.9917
AG News 0.9961 0.9960 0.9960 0.9960 0.9959 0.9959 0.9959
Amazon Reviews 0.9880 0.9881 0.9875 0.9886 0.9881 0.9883 0.9888
BBC News 0.9337 0.9310 0.9415 0.9470 0.9487 0.9420 0.9354
CORD-19 0.9926 0.9932 0.9932 0.9924 0.9929 0.9927 0.9928
IMDb 0.9946 0.9947 0.9954 0.9946 0.9945 0.9946 0.9941
PubMed 0.9941 0.9941 0.9942 0.9943 0.9940 0.9942 0.9941
Pushshift 0.9926 0.9927 0.9932 0.9931 0.9926 0.9925 0.9933
Reuters — — — 0.9871 — 0.9871 0.9872
Wikipedia 0.9936 0.9934 0.9932 0.9931 0.9933 0.9932 0.9929
Yahoo Answers 0.9935 0.9934 — 0.9937 — 0.9934 —

TABLE 4.2. Topic diversity across 11 datasets. Bold indicates the
best encoder per dataset; (Q) denotes quantized runs for Llama-2. Miss-

ing entries were not evaluated.
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5. CONCLUSIONS

Contrary to intuitive expectations, our empirical results suggest that increasing the
complexity of transformer-based language models has little to no impact on the qual-
ity of the topics discovered in unsupervised topic modeling. Experiments were carried
out with the BERTopic [7] framework, which employs a contemporary pipeline with
document embeddings and clustering to produce meaningful and distinct topic ar-
rangements. We propose an approach to measure the quality of the topics through
systematic variation of the embedding model, ranging from small architectures such
as MiniLM to large-scale models such as LLaMA-2, which consists of up to 13 billion
parameters.

To quantify the interpretability of the generated topics, we relied on a set of estab-
lished automatic metrics for topic coherence, grounded in the theoretical framework
proposed by [22]. This framework decomposes coherence evaluation into four compo-
nents: segmentation, probability estimation, confirmation measure, and aggregation
function. By adopting metrics such as C,, we ensured a robust and multifaceted as-
sessment of both intra-topic consistency and inter-topic divergence.

The pipeline we implemented builds on BERTopic and introduces a modular design
that facilitates the replacement and comparison of different embedding models while
keeping all downstream processing stages (e.g., dimensionality reduction, clustering,
topic extraction) fixed. This allowed us to isolate the influence of the embedding space
on the quality of the topics, as measured by coherence and diversity metrics.

Our results, drawn from both general-domain (20 Newsgroups) and specialized-
domain (PubMed abstracts) datasets, indicate that increasing the size of the trans-
former encoder does not necessarily improve topic interpretability. In fact, smaller
models such as DistilBERT and MiniLM performed comparably to their larger coun-
terparts. Similarly, applying 8-bit quantization had negligible effects on the coherence
and diversity of the resulting topics, suggesting that model efficiency can be signifi-
cantly improved without sacrificing interpretability.

Although the present findings are promising, the study itself is not definitive nor
all-encompassing. The findings need to be generalized by testing in other kinds of text
corpora, including not only non-English data, but also multi-domain corpora and low-
resource corpora. Moreover, further studies could try to explore more kinds of models,
embedding techniques, and training objectives, especially the ones which were adapted
for specific sentence-level semantical task or dense retrieval-related tasks. In this way,
we could have further understanding on the relationships between model complexity,
computational cost and interpretability.

In conclusion, our research demonstrates the strong methodological approach of con-
trolled experiments while firstly revealing an unexpected yet useful finding that larger
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models do not always produce better results. The DistilBERT model with 66 M param-
eters achieves topic coherence similar to that of LLaMA-7B with 7B parameters while
requiring less than 1 percent of memory and running faster. The efficiency-effectiveness
trade-off makes lightweight models highly attractive for practitioners seeking scalable
and interpretable topic modeling solutions, which is crucial for resource-limited deploy-
ments.
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